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A mechanical system consisting of an unchangeable subsystem (the carrier-body) and a changeable part (the working body) is 
considered. The motion of particles of the working body with respect to the carder is programmed and specified. The structurally 
changeable part of the system has a configuration that varies with time and may be either constant or variable in its composition. 
The system is situated in a uniform gravitational field. The motion of the system is considered in the case when its centre of 
inertia is not a fixed point of the carder. Criteria are formulated for the existence of linear and quadratic integrals, and the explicit 
form of the integrals ~ determined. A mechanical interpretation is given for the integrals and the conditions for their existence. 
© 1996 Elsevier Science Ltd. All rights reserved. 

A number of publications, have been devoted to a system of changeable configuration, acted upon by 
reactive forces produced when a working body whose particles have given absolute velocities is detached, 
while the carrier-body has a fixed point. In particular, conditions have been established for the existence 
of a linear integral: and a quadratic integral. Equations of motion exist for the case in which the velocities 
with which the particles of the working body detach from the carrier-body are given.§ 

The mathematical model considered below includes Aminov's and Makeyev's models (modelsA and 
M). For mode lA we solve the problem of finding integrals, and for model M the integrals are written 
out explicitly, and the number of criterial conditions is reduced compared with previous treatments. 

1. Let  Ei be an inertial orthobasis, let E 2 be a basis rigidly attached to a carrier and let E 3 be the 
principal orthobasis, given by the principal axes of inertia of the system at a fixed point O of the 
carrier; x/. is the instantaneous angular velocity of basis Ei relative to Ej. If the system is considered as 
a collection of material points M,,, its angular momentum G relatwe to O in motion relatwe to the basis 
Ei may be written as follows (In = OMn): 

G i =~,m.r~ x (r~)~; (1.1) 

Changing to the derivative in the basis Ej, we obtain 

Gi = Gj + Jxji (1.2) 

where J is the inertia operator  of the system at O, A k and ek denote the eigenvalues and corresponding 
eigenv¢ctors of  the inertia operator. 

The absolute angular momentum of the system relative to O is denoted by G, G = G1. 
The equations of motion [1], written for the angular velocity x21, may be expressed as 

CJ=Gxx21 +Ax21 + s x a + L ,  s = s x x 2 l  (1.3) 

where the dot denotes differentiation with respect to time in E2, s is the unit vector in the vertical 
direction, rc = OC, a = Pro and P is the weight of the body. 

The operator  A and the function L(t) are given. For model A 

L(t)=Lr(t)+Y.faarn xv~, A~=~rhnr n x ( x x r n )  (1.4) 
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where L r is the principal moment  of the reactive forces about the point O and v,~ = i-n is the velocity 
of a particle relative to the carrier. 

The equations of motion for model M may also be written in the form of (1.3), with A -- 0 and L(t) 
the principal moment  of the quasi-reactive forces, which is given for this model. 

To construct the linear integral, it is convenient to use a system equivalent to (1.3) 

J ( x ) ' ~ 3 = ( J x ) x x + Z x + s x a + N ,  (s)~3 = s x ( x + b )  (1.5) 

For modelA: x = x21, b = x32, Z = A - (J)E3 + M(G2) - m(x32)J, N = L - (G2~ 3 - x32 x G 2. 

For model M: x = x31, b = 0, Z = M(G3) - (J)E3' N = L - (G3)E3. 
Here  and below M(e) is the vector multiplication operator, M(c)x -- c x x. When N = 0, b = 0, 

Z = 0, system (1.5) is the Euler-Poisson system. When b = 0, N = -(d)~3, Z = M(d), it describes the 
motion of a gyrostat with gyrostatic moment  d. 

We shall assume throughout that A(t) and L(t) are continuous and J(t), G(t), a(t) are continuously 
differentiable functions in the interval [0, +oo]. 

2. Conditions for the existence of an integral linear in x, F(x, t) = m • x + 9(0 ,  are obtained by 
differentiating F(x, t) along trajectories of system (1.5). One of the necessary conditions is symmetry 
of the inertia ellipsoid. If such symmetry exists (e.g. A1 = A2 ~ A3), the necessary and sufficient conditions 
for the existence of the integral are 

m ( l )=m (2)=0, a ( l )=a  (2)=0, z31 =z32=0  (2.1) 

and the integral itself in the form m(3)x (3) + tp = const is equivalent to the definition of x (3) as a 
solution of the equationA3 £(3) = z33x(3) + NO). Throughout, c (k) will denote the projection of  the vector 
e onto an axis of the basis E3, c (k) = c .  ek. Obviously, if conditions (2.1) are satisfied, the last equation 
may be obtained directly from (1.5). In the classical case of a symmetric gyroscope this integral yields 
the well-known condition x (3) = const, where zig are the matrix elements of the operator  Z in the basis 
E3. 

On the assumption that all the h i are distinct, we shall derive conditions for the existence of a linear 
integral invariant (or particular integral) O(x, s, t) = 0. Without loss of generality, it will suffice to 
consider the cases • = n • x - 1 and • = n • x. 

We shall find conditions for the existence of a linear particular integral 

n . x  = 1 (2.2) 

Differentiating (2.2) along trajectories of system (1.5), we obtain the condition 

(n)'~ . x + n . J - t ( ( J x ) × x + Z x + s  x a + N )  =0 (2.3) 

which must hold for all t, s and for all x satisfying the constraint (2.2). One of  the necessary conditions 
is rc II J -in. By (2.2), we can put x = n ]n1-2 + 1, where I • n = 0. Condition (2.3) is equivalent to the 
requirement that the terms of order up to two inclusive vanish with respect to 1, i.e. 

n. ((n)'~ + J - l Z n +  J'lNInl-2 +J - '  ( ( Jn)x  n)ln1-2 ) = 0 

l . (n )~  + n . J - l ( Z l + ( J n x l + J l x n ) l n l - 2 ) = 0  Vi: n . l = 0  

n - j - l ( ( J I )  x l ) = 0  V l : n . l = 0  

(2.4) 

(2.5) 

(2.6) 

As shown by an analysis of condition (2.6), this condition will only hold when 

#2) = O, t~(nO))2 = a3(nO))2 (2.7) 

Here and below, we have assumed tha tA 1 ~ A  2 ~A3, (~k -'~ (h i -A j )A-k l~ i j k ,  where ~/jk = 1 if (i,j, k )  
is a cyclic permutation of (1, 2, 3) and 8ijk = --1 otherwise. It follows from (2.7) that the vector n lies 
in a plane orthogonal to the middle axis of the inertia ellipsoid and may be inclined tO the minor axis 
at angles __.[3, where tg 13 = ~/(oqa3-~). ' 
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Condition (2.5) is equivalent to the collinearity condition 

(n)~ 3 + z r j - l n  + el n1-2 = qn (2.8) 

where e = J(n x / - a n )  - (Jn) x (J-an), n • c = 0. Taking the scalar product of (2.8) and n, we find 
that q = n .  ((n)k~ + ZrJ-ln)l n 1-2. It follows from (2.7) that n .  J-a((Jn) x n) =0 and (2.4) takes the 
form n .  ((n)E 3 + il-lZn + J-aN I n 12) = 0, which enables us to find the parameter q, q = - n .  J-aN. 

For this value of  q condition (2.8) yields 

(n)~3 + ZrJ-In + cln1-2 = - (n .  j-IN)n (2.9) 

which is equivalent to the system of conditions (2.4) and (2.5). For the two possible directions of n given 
by condition (2.7), the vector c is collinear with the middle axis of the ellipsoid, e = -+ I n 12 ~/(tzl~)e2. 

If the inertia ellipsoid at O is not a sphere, this result may be expressed as follows. The linear integral 
(2.2) has the forn~t 

nO)x O) + n(3)x (3) = 1 (2.10) 

subject to satisfaction of the necessary and sufficient conditions 

(n)~ + z r j - I n  + (L. j - In )n  = q = ~ e  2 

rcllj-ln, n(2)=0, ~ 1 n ( I ) = + ~ 3  n(3) 
(2.11) 

The initial conditions must satisfy condition (2.10); the complete number of  scalar conditions here 
is at most eight. 

The linear relationship obtained by projecting the differential condition (2.11) onto e2, together with 
condition (2.7), yields 

n (i) = c o s ) ' ( x * )  -1,  n (3) =sinT(x*) -I 

T=+[L t g [ $ = ~ ,  x*=-~t2sinTot/i-g32cosTtx3 l, z~=Ai~ U 
(2.12) 

The integral (2.10) may now be written explicitly as 

x 0) cos)' + x (3) sin), = x* (2.13) 

The two differential conditions for n 0), n (3) obtained from (2.11) may be written, using (2.12), as 

.~*--X* ~ 1 1 c 0 s 2 ) ' + ~ 3 3 s i n 2 ) ' + ( ~ 1 3 + ~ 3 1 )  = N0)c°s-----~Y ¢ N(3)sin------~T 
Ai A3 

(2.14) 

f+~13 +(~33-~ l l ) f -~3~f2  = 0, f = tg)' (2.15) 

The condition r,:lI.Fln, considered in the c a s e  # ( t~ l )n  (1) = ± #(~3)n (3), is of the same form as Hess's 
well-known corLfig~ration conditions for a rigid body 

~/A I (A 2 - A 3)re O) ~: ~/A 3 (A, - A 2)re (3) = 0, tc (2) = 0 (2.16) 

Denoting the angle between rc and the semi-minor axis of the inertia ellipsoid by q~, we obtain for 
condition (2.16) 

A, ~ cosq~ = +A 3 ~ 3  sin q~ (2.17) 

and the integral (2.13) becomes 

Atx (1) cos 9 + A3x (3) sin 9 = x'-41 + ~lct3 AtA3A2 t (2.18) 
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This integral expresses the projection of the angular momentum onto the direction of r c. 
We have thus shown that the linear integral (2.2) has the form of (2.13). Necessary and sufficient 

conditions for its existence are the configuration conditions (2.16) and the differential relations (2.14) 
and (2.15). 

Repeating the above reasoning for the integral n • x = 0, it can be shown that its form and the 
conditions for its existence are obtained from (2.13)-(2.16) by setting x* = 0. 

If the inertia ellipsoid has an axis of rotation, for example ifA1 = A2 ¢ A3, the necessary conditions 
for the existence of the particular integral (2.2) are still (2.1), and so in this case the integral F = 
m-  x + 9(0  analysed above exists. 

Cases in which N is regulated under conditions that ensure that N is orthogonal to or collinear with 
x may be analysed by letting N have the form N = u(t) x x or N = p(t)x, which preserves the form (1.5) 
of the dynamical system, incorporating N in the linear term Zx, but adding to the operator Z in the 
first case M(u) and in the secondpE (where E is the identity operator). If conditions (2.14) and (2.15) 
are satisfied, one must set N (1) = N (31 = 0 and vary ~j. The configuration condition (2.16) is retained. 

The presence of the integral (2.13) enables one to reduce the order of system (1.5). If integrals of 
type (2.13) for y = 13 and 7 = -I~ exist, the components x are uniquely defined, since (for differentAi) 
condition (2.16) may be satisfied only if r~ = 0 and x (1) = -~32a~ -1, x (3) = -~12t~i -1, whatever the sign. 
We now derive from (1.5) a linear equation for x (2) 

if(2) -- ~22X(2) = ((X2~12~32 -- 0~1~21~32 -- 0~3~23~12 )(~l(g3 )-1 + N(2)A21 

3. Let us consider the application of our general results for system (1.5) to the analysis of model M. 
In that case 

z ,  = - = = z , . ,  = - z . , ,  = = = ) 

Using condition (2.17) with the plus sign, we can rewrite the necessary condition (2.15) for the existence 
of a linear integral as 

(p = -G~2) A~ ' (3.1) 

Put g = x*v -1, v = cos ~(AlcoS 9) -1. Then g = (G3 (1) sin 9 - G(3)3 cos 9)(c~1o~3) -l:z. Condition (2.14) 
may be written, in view of (3.1), as a condition forg  

g -  (~1a3)~ A21G~2)g = Nrc (3.2) 

where Nrc = Nlcos 9 + Nasin 9 is the projection of the vector N onto the direction r c. The integral 
(2.13) becomes 

G 0) cos9+  G (3) sin9 = A2(G~ 3) sin9(A 2 - A 3)-t _ G~,) sin 9(A I _ A2 )-1 ) (3.3) 

Using Hess's condition, we deduce from (3.2) that 

(A2 (G~3) sin 9 ( A  2 _ A3 )-l  _ G~I) c o s 9 ( A  1 _ A2 )-I  ). = Lr  c (3.4) 

Thus, if conditions (2.17), (3.1) and (3.4) hold, a linear particular integral exists and it has the form 
of (3.3). 

4. We will now clarify the mechanical meaning of the linear integral and the conditions for its existence. 
Let E5 be an orthogonal basis obtained from E 3 by rotating it through the angle 9 about the middle axis 
of the inertia ellipsoid. Let esi be the unit vectors of Es. The coordinates of es/in E3 are e51 = (cos 9; 0; sin 

(50 9), e52 = (0; 1; 0), e53 = (-sin 9; 0; cos 9). It can be shown that (here G = G.  es/) 

A2rG(-3)sin9rA2-A3X-l-GO)cos'~tA!x3 ~ J 3 ,e~ . x-l, ,-,(51)_L~(53):,,, ,,, x~ 
. --ta 2) ]----u 3 T'--, 3 ~'-',1~3/ (4.1) 

In view of (4.1), the integral (3.3) yields an expression for the projection of the angular momentum 
(AM) of the system onto the direction rc in terms of the projection onto rc and the orthogonal direction 
e53 of the AM of the system in its motion relative to the principal basis 
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Grc = G~ 51) + G~53)(~10~ 3 ) - ~  
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(4.2) 

Since G - G 3 = Jx31 = G e is the AM of the system in translational motion together with the principal 
basis E3, the integral (4.2) may be reduced to the form 

Gerc = G~53)(ff.lO~ 3 )-~2 (4.3) 

which expresses the projection onto r~ of the AM of the system in translational motion with basis E 3 
in terms of the projection of the AM of the system in its motion relative to the basis E3 onto the direction 
orthogonal to rc and the middle axis of the inertia ellipsoid. I f  G3 (53) = 0, one obtains an analogue of 
the linear integral for a rigid body: G e = 0. 

The necessary condition (3.4) may be written in the form 

( G  (51) +G(53)(0~ 0~ ) - ~ ) ' -  L 
3 3 1 3  - rc (4.4) 

If Hess's condition holds, the rotation of rc takes place in a plane orthogonal to the middle axis of 
the inertia ellipsoid, and the vector Jxs3 equals the AM of the system in translational motion: rotation 
together with rc relative to E 3. Since in E3 we have x53 = (0; -tp; 0), the necessary condition for the 
existence of the integral (3.1) expresses the fact that the projection of the AM of the system moving 
relative to E3 onto the middle axis of the inertia ellipsoid is equal to the projection onto the same axis 
of the AM of the system rotating with rc relative to E3. 

Comparing the integral (3.3) with condition (3.4), we get 

Grc = Nrc ( 4 . 5 )  

Consequently, in this motion the derivative of the projection of the AM of the system onto the direction 
of the barycentric vector equals the projection onto the same direction of the principal moment of the 
quasi-reactive forces. 

We will now compare property (4.5) with the theorem on the variation of AM: (G~s + x51 x G = N 
+ s x a. Hence, bearing in mind that the direction of rc is fixed in Es, we obtain r ° • (x51 x G) + Gr~ = 
Nr~, which agrees with (4.5) since it can be shown that when the linear integral exists the vectors r °, x51, 
G are collinear. 

Taking (3.3) and Hess's condition into consideration, we see that the following identity holds in E3 

G - -  Grc rO = (G  (I) sin 2 (p - G (3) sin q~cos(p; Gf2); G (3) COS 2 ~0 - -  G O) cos(psin q)) (4.6) 

Define a vector x a = r ° x (r°)~l = r ° × ((r°)~3 + x31 × r°). Expressing x31 in terms of G, we see that 
in E3 

a _ A2 t (G 0) sin 2 tp- G (3) sin tpcosq~; G (2) - G (3) - A  2 ~0;G (3) cos 2 t,p- G 0) cos (psin (p) X c - -  

Comparing x a with (4.6) and assuming that the necessary condition (3.1) is satisfied, we obtain an 
expression for the AM of a system having a linear integral, as a sum of two components 

G = Grcrc 0 + A2xc a = 0 0 0 • Gr~r d + A2r d × (rd)el (4.7) 

Let v~ be the absolutely velocity of the centre of inertia C. Then formula (4.7) becomes 

a 
G = Grc rO + A21rc I-2 r c x v  c (4.8) 

We have thus shown that if a linear integral exists, the AM G of the system has two components, 
one collinear with rc and given by (3.3) or (4.2), the other equal to the AM of a point mass of mass 
A21rc1-2 placed at the centre of inertia of the system. The second component is also equal to the 
AM of a point mass with radius vector (Mr2cA~l)-l/2r~ and mass equal to the mass of the system M. 

5. We will now derive conditions for the existence of a quadratic integral of system (1.3) in the form 

1/2G • (BG) + m • G + n .  s + tp(t) = const (5.1) 
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assuming that  J, B, m, n, Gi, ~0 e C1[0, +-0). Differentiat ing (5.1), by virtue of  system (1.3) we obtain 
the identity 

( B G + m ) . ( G x  x21 + Ax21+sx  a + L ) + } ~ G . ( B G ) +  t h . G + h . s + n . ( s  x x21)+ ~0- 0 (5.2) 

Putting x = x21 and substituting G = Jx + G2 into (5.2), we obtain homogeneous  identities in x and s 

(BJx)  • (Jx × x)  = 0 (5.3)  

(BJx) . (G  2 x x +  A x ) + ( B G  2 +m).(Jxxx)+~2x.(JBJx)=O (5.4) 

(BJx) • (s x a) + n -  (s × x) = 0 (5.5) 

x.  ( JBL)  + (BG 2 + m) .  (G 2 × x + Ax) + x.  ( J B G  2) + m .  (Jx)  = 0 (5.6) 

(BG 2 + m) .  (s × a)  + n. s = 0 (5.7) 

(BG 2 + m ) - L + ~ G  2 - (BG2)+  lil.G 2 +¢~= 0 (5.8) 

F rom now on we shall assume that  the Ai are all different. 

Proposition 1. The  opera tor  B in (5.1) has the fo rm 

B = VI( t )J  -1 + V2(t)E (5.9) 

Indeed,  identity (5.3) is equivalent to the s ta tement  that  the vectors BJx, Jx, x are coplanar,  whatever  
x .  I f  x is not  eollinear with a principal axis of  inertia, the vectors  Jx and x are not  coll inear and then 
BJx = VlX + v:Jx, which implies (5.9). 

Proposition 2. A necessary condition for  the existence o f  an integral is that  B and n must  be expressible 
as n = vJ  -1, n = va. 

Identity (5.5) holds for all s only if n × x --- a x BJx. Putting x = ei, consider the scalar product of the last identity 
and ej. By (5.9), we obtain ek. (n - (vl + v:~li)a) = 0 for i ~ k, i, k = 1, 2, 3. This is a system of linear homogeneous 
equations for the components of n, and since a ¢ 0 it has a non-trivial solution. Hence its determinant must 
vanish, v32(al -A2)(A 2 -A3)(A 1 -A3) = 0. Since theAi are all different, it follows that v2 -- 0. It now follows from 
the system that n = via and it follows from (5.9) that B = Vl J-1. 

Proposition 3. The parameter  n(t) in the integral is a unit vector in the direction of  re(t) and the operator  
B may  be writ ten as B = a-lJ -1. 

Identity (5.7) holds only if 

n+ a x (BG 2 + m)  = 0 (5.10) 

By Proposition 2, n II a, and it then follows from (5.10) that I n I = const, so that I va  I = const. Since the 
left-hand side of (5.1) is defined, apart from a constant factor, we can put Iva  I = 1 and v = a -x, Propos i t ion  3 
follows from Proposition 2. 

Proposition 4. A necessary condition for the existence o f  an integral is that in a basis E4 rotating relative 
to E2 at angular  velocity 

x42 = J-1G2 + a m  (5.11) 

the direct ion o f  the radius vector  o f  the centre o f  inertia is fixed. 

Taking into account that n = a °, B = a-lJ -1, we can write condition (5.10) as a ° + a ° x x42 = 0 ,  whence it follows 
that 

(a°)k4 = 0 (5.12) 
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Proposition 5. A necessary condi t ion for  the existence of  an integral is that  

(a./)~4 = 2 a A  (5.13) 

Identity (5.4) has the form x.  (F_x) - 0, where F = h + M ( x 4 2 ) J -  (2a)-l(aJ), and it will hold only i fF  is a skew- 
symmetric operator  Since F + F r = 0, it follows that a-1(aJ) ' + JM(x42 ) - M(x42)/= 2A, which implies (5.13) if 
we take into account the truth of (5.11) and use the following relationship (see, for example, [2, p. 145]) 

(aJ)~_~ = ( a J ) ~  4 + M(x42  ) a J  - a JM(x42  ) 

Proposition 6. A necessary condi t ion for  the existence of  an integral is that  

L = Ax42 +(G)~r4 (5.14) 

Since BG 2 + m = a-ix42, identity (5.6) is equivalent to the condition L = G 2 x 1942 -- AX42 - a J / ~  2 - aJm'. Since 
by (1.2) we have G2 = Jx42 + G4, it follows from (5.11) that m = -a-lj-1G4, and, noting that B = a-lj -1, we can 
express L as 

L = (Jx42 +G4)× X42 -AX42 +(aJ)'a-lx42 +1~4 

Changing to differentiation in E4 and using (5.13), we obtain (5.14). 

Proposition 7. The  pa rame te r  ¢p(t) in the integral has the form 

~o(t) = ~ m .  ( B ' t m )  = ~ a - I G 4  • ( J - I G  4) (5.15) 

1 To prove this, we :set in G = -B-  m in identity (5.2). Since the sum of terms involving s vanishes identically, we 
obtain 2qb = - m .  (B-1BB-lm) + 2ni(B-lm), which implies the first equality in (5.15). Since m = -(aJ)qG4, the 
proof is complete. 

Proposition 8. The  quadrat ic  integral (5.1) exists if and only if condit ions (5.12)-(5.14) are satisfied, 
in which case B = (aJ -1, m = - (a j ) - lG4,  n = a °, tp = (2a)-lG4 • (j-1G4). 

We have thus found explicit expressions for  the parameters  in the integral and obta ined criterial 
condit ions for  its existence. 

6. We now clarify the mechanical  meaning of  the quadrat ic  integral. By Proposi t ion 8, we can express 
the integral (5.1) as 

a- I (G - G4)- (J-I(G - G4)) + 2a ° .  s = const (6.1) 

Since G = G1, it follows f rom (1.2) that  G - G4 = Jx41, and we have the following equivalent  form 
of  the integral 

a-Ix41 "(Jg41) +2a° . s= const (6.2) 

where  x41 • (Jx41)/2 = T~ is the kinetic energy of  the system in translational mot ion  toge ther  with 
0 E4 (i.e. in particular,  in rotat ion toge ther  with re). Since aa  • s = a • s = P ro .  s = V is the potent ia l  

energy of  the system, we can express the integral (6.2) as 

T~4 + V = P(t)lrc(t)lconst (6.3) 

Thus,  if the corapound mechanical  system of  variable configurat ion and mass that  we have been  
studying is such that  its centre  of  inertia is not  the fixed point  of  the carr ier  and its principal moment s  
o f  inertia are pairwise distinct, we obtain the following result. 

Proposition 9. If the system has an integral that  is quadrat ic  in the components  of  the angular  
momen tum,  it may be writ ten in one  of  the forms (6.1)-(6.3). 

If  the quadrat ic  integral exists, it expresses the fact that  the sum of  the kinetic energy of  the system 
in translational mot ion  toge ther  with the basis E4 and the potent ial  energy of  the system in a uni form 
gravitational field is directly propor t ional  to the absolute value of  the static momen t  of  the system about  



38 V. Yu. Ol'shanskii 

the fixed point. In the special case when P(t)lrc(t)l = const, the integral takes the form of the physical 
energy integral 

~4 + V = const (6.4) 

It will be shown below that condition (5.13) determines the angular velocity x43 of the basis E4 relative 
to the principal basis E3, and consequently one can also determine the angular velocity x42 of E4 relative 
to the carrier. Thus, all the parameters in the integral and the criterial conditions may be expressed 
explicitly in terms of given quantities. 

7. Let us change to differentiation in E3 in condition (5.13) 

(aJ)~3 = 2aA + M(x43)o.J - aJn(x43 ) (7.1) 

Put ~ij = ei. (Aej). It follows from the definition (1.5) that 

Multiplying (7.1) on the left by ei and on the right by % we obtain 

(aAi)'So=2aZiy+a(Ai-Aj)(eixei).x43, i,j=1,2,3 (7.2) 

When i = j this implies conditions linking the given functions 

(In a)" = 2ZI1A~ -1 - (In A l )" = 2k22A21 - (In A 2 )" = 2~,,33A31 - (In A 3 )" (7.3) 

When i ~ j conditions (7.2) give the angular velocity components 

(k) -1 X43 =-2Zij(A~ott) , k~i ,  k~ j (7.4) 

Thus, condition (5.13) is equivalent to the three scalar conditions (7.3) and to specifying the angular 
velocity x43 in the form (7.4). 

It follows from this relationship between x43 and k/j that the basis E4 will coincide with the principal 
basis E3 if and only if a basis made up of eigenvectors of the operator A coincides with E 3. 

8. Assuming that the criterial conditions (5.12)-(5.14) are satisfied, we will now transform the initial 
system (1.3) and directly verify that these conditions are sufficient for the existence of a quadratic integral. 
To that end we change in (1.3) to differentiation in the basis E 4 and substitute L from (5.14) 

(G)~4 =Gxx41 +Ax4t +(G4)~4 + s x a ,  (s)~4 =sxx4 t  

Substituting G = Jx41 + (;4 and A from (5.13) into this equality, we obtain the system 

(2a)-I(aj)~4x41 +aJ(a-lx41)~4 =(Jx41 +G4)Xx41 +s×a, (S)~ 4 =SXX41 (8.1) 

Taking the scalar product of the first equation in (8.1) and the vector a-ix41, with due attention to 
condition (5.12) and the second equation in (8.1), we obtain 

(a-ix41 • (aJa-lx41))" = 2x41. (s x a °) = - 2 a  ° • (s)~r4 = -2 (a  ° .s)" 

which implies the existence of the integral (6.2). 
We will use one more transformation. Denote @ = (a J) 1/2. Introducing the variables 

y = a-ltI:)x41, "~ = Ja(t)dt 

we can rewrite system (8.1) in the form 

= S x ~ - l y  dy =(a3AIA2A3)-)~(f~2y+~G4)×y+exy+c~-I(s×a°)' -~ E4 (8.2) 
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If the direction of a is constant in E4, multiplication of (8.2) by y will yield an integral equivalent to 
(6.2) 

y2 + 2a o . s = const. 

The vector c in Eq. (8.2) is defined by the condition 2aM(c) = ~M(x43)~ -1 + ~-lM(x43)~ - 2M(x43), 
whence it follows that the components of c are 

(k )_  _ ( ~ /  _ 2 -1 (k) (8.3) ~ j )  ( 2 a ~ )  x43, k ~ i ,  k ~ j  c 

9. The results for model M may be obtained for A - 0. It then follows from (7.4) that x43 = 0 and 
the bases E4 and E3 coincide. The integral (6.1) becomes 

a-l(G - G 3 ) .  ( J - l ( G  - G3))  + 2a  ° '  s = const  (9 .1 )  

where G - G3 = Jx31, and this integral may also be written in the form of (6.2): a-ix31 • (Jx31)+ 
2a ° • s = const. 

The necessary and sufficient conditions for the existence of a quadratic integral are obtained from 
(5 .12) ,  (5 .14 )  and  (7 .3)  

A i = a - l c i  ( c  i = const), rc°l~ = const, L = Y thnr n X U n = (G3) ~ (9.2) 

Makayev (see tlae publications cited in the footnote to the first page of this paper) has investigated 
the conditions of existence of an integral of the form 

G • (BG) + m • G + n • s = const 

This integral is the special case of (5.1) with ~0 = const. Since, by (5.13), the operator aJ  is constant 
in E3, it follows from (5.15) that the angular momentum G3 is constant in E3 and, by (9.2), L = 0. Thus, 
a quadratic integral in Makeyev's sense may be written in the form of (9.1), and the conditions for its 
existence are 

0 • 
A i = a-tci ,  (re)n3 =0,  (G3)~3 =0,  L = 0. 

I wish to thank N. N. Makeyev for suggesting the problem and for his interest. 
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